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Gospel of Universal Man

Every Child, at birth, is the universal man. But, as it grows, we trun it into “a petty
man”. It should be the function of education to turn it again into the enlightened “univer-
sal man”.

The Religion of Humanity, the Universal Path, the Welfare of All, Reconciliation,
the Integral Vision - these five mantras should become view of the Future. In other
words, what we want henceforth is not this religion or that religion, but the Religion of
Humanity; not this path or that path, but the Universal Path; not the well-being of this
individual or that individual, but the Welfare of All; not turning away and breaking off
from one another, but reconciling and uniting in concord and harmony; and above all, not
the partial view of a narrow creed, not the dual outlook of the material and the spiritual,
but the Integral Vision of seeing all things with the eye of the Divine.
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Preface

In the current era of intelligent systems, the information technology plays a very
important role in building up a complete automated society. The problems at hand have got to
be tackled, on time/ on real time such that the time required to solve them with the aid of
computers becomes negligible. What matters in achieving these is only the complexity of the
method (algorithm) to be adapted to solve a problem. The method may achieve the intended
goal either by reducing the search domain (in memory) or by the use of indexing on large
memory. That is all what the tradeoff that we have to understand while designing a suitable
algorithm for solving a problem. In case of existence of several ways for solving a problem,
we have to look for the most efficient one among them. The efficiency of a method depends
on our requirement specification. A method/algorithm which is efficient for somebody may
not be efficient for others. Before, one goes for adaptation of any method, he/she has to work
out the tradeoffs of all algorithms with respect to their time requirement, space requirement,
correctness, accuracy, robustness, simplicity in terms of transparency etc. which are generally

called the quality factors.

In this course material, we address the issues related to the quality factors of an
algorithm. This material provides you an insight into the field of designing and analyzing

algorithms.

The design strategies such as (i) divide and conquer, where a problem is split into
many sub problems so that it can be handled so efficiently, (ii) Greedy strategy, where we
always try to optimize our requirement being greedy in choosing the next best solution, (iii)
Backtracking strategy, where we can look back to achieve betterment in the solution to be
arrived, (iv) Branch and Bound strategy where we work with a set of constraints/functions to
be met and finally (iv) Dynamic Programming strategy where we always try to minimize the
search domain to achieve efficiency in algorithm execution are completely dealt in this
material. Indeed, these though inside the material, are called techniques, it would be better to
always call them strategies always as techniques in fact simulate what a more optimist human

being does while achieving efficiency in solving a problem.

We thank everyone who helped directly or indirectly to prepare this material. Without

their support this material could not have been prepared.

Dr. D.S.Guru, Dr. H.S.Nagendraswamy, Dr. Lalitha Rangarajan
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1.0 OBJECTIVES

After studying this unit you should be able to

Define an algorithm and its characteristics.

Explain the performance of algorithms.

Transform an algorithm into a program.

Discuss the space complexity and time complexity of an algorithm.

Give asymptotic notations for algorithms.
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1.1 INTRODUCTION

Computer Science is the field where we study about how to solve a problem
effectively and efficiently with the aid of computers. Solving a problem that too by the
use of computers requires a thorough knowledge and understanding of the problem. The
problem could be of any complex ranging from a simple problem of adding two numbers
to a problem of making the computer capable of taking decisions on time in real
environment, automatically by understanding the situation or environment, as if it is
taken by a human being. In order to automate the task of solving a problem, one has to
think of many ways of arriving at the solution. A way of arriving at a solution from the
problem domain is called algorithm. Thus, one can have many algorithms for the same
problem.

In case of existence of many algorithms we have to select the one which best suits
our requirements through analysis of algorithms. Indeed, the design and analysis of
algorithms are the two major interesting sub fields of computer science. Most of the
scientists do work on these subfields just for fun. We mean to say that these two sub areas
of computer science are such interesting areas. Once the most efficient algorithm is
selected, it gets coded in a programming language. This essentially requires knowledge of
a programming language. And finally, we go for executing the coded algorithm on a
machine (Computer) of particular architecture. Thus, the field computer science broadly

encompasses,
» Study on design of algorithms.
= Study on analysis of algorithms.
» Study of programming languages for coding algorithms.
= Study of machine architecture for executing algorithms.

It shall be noticed that the fundamental notion in all the above is the term

algorithm. Indeed, that signifies its prominence of algorithms, in the field of computer

science and thus the algorithm deserves its complete definition. Algorithm means




‘process or rules for computer calculation’ according to the dictionary. However, it is

something beyond that definition.

1.2 DEFINE AN ALGORITHM

An algorithm, named for the ninth-century Persian mathematician al-KhowArizmi,
is simply a set of rules for carrying out some calculation, either by hand or, more usually,
dn a machine. However, other systerﬁatic methods for calculating a result could be
included. The methods we learn at school for adding, multiplying and dividing numbers
are algorithnis, for instance. The most famous algorithm in history dates from well before
the time of the ancient Greeks: this is Euclid's algorithm for calculating the greatest -
common divisor of two integers. The execution of an algorithm must not normally
involve any subjective decisions, nor must it call for the use of intuition or creativity.
Hence a cooking recipe can be considered to be an algorithm if it describes precisely how
to make a certain dish, giving exact quantities to use and detailed instructions for how
‘long to cook it. On the other hand, if it includes such vague notions as "add salt to taste"
or "cook until tender” then we would no longer call it an algorithm.

When we use an algorithm to calculate the answer to a particular problem, we usually
assume that the rules will, if applied correctly, indeed give us the correct answer. A set of
rules that calculate that 23 times 51 is 1170 is not generally useful in practice. However
in some circumstances such approximate algorithms can be useful. If we want to
calculate the square root of 2, for instance, no algorithm can give us an exact answer in
decimal notation, since the representation of square root of 2 is infinitely long and
nonrepeating. In this case, we shall be content if an algorithm can give us an answer that
is as precise as we choose: 4 figures accuracy, or 10 figures, or whatever we want.
Formally, an algorithm is defined to be a sequence of steps, which if followed,
accomplishes a particular task. In addition, every algorithm must satisfy the following

criteria.

» Consumes zero or more inputs

= Produces at least one output

Analysis and Design of Algorithms 3



= Definiteness
®* Finiteness

= Effectiveness

The definiteness property insists that each step in the algorithm is unambiguous. A step is
said to be unambiguous if it is clear, in the sense that, the action specified by the step can
be performed without any dilemma/confusion. The finiteness property states that the
algorithm must terminate its execution after finite number of steps (or after a finite time
period of execution). That is to say, it should not get into an endless process. The
effectiveness property is indeed the most important property of any algorithm. There
could be many algorithms for a given problem. But, one algorithm may be effective with
respect to a set of constraints and the others may not be effective with respect to the same
constraints. However, they may be more effective with respect to some other constraints.
In fact, because of the effectiveness property associated with algorithms, finding out most
optimal/effective algorithm even for already solved problem is still open for the research

community for further research.

To study the effectiveness of an algorithm, we have to find out the minimum and
maximum number of operations the algorithm takes to solve the desired problem. The
time requirement and space requirement profiling should be done. The profiling may be
relatively based on the number of inputs or the number of outputs or on the nature of
input. The process of knowing about the minimum cost and the maximum cost (may be in
terms of CPU time and memory locations) is called analysis of algorithm. In the

subsequent sections, we present methods of analyzing an algorithm.

1.3 ANALYSIS OF ALGORITHMS

In practical situations, it may not be sufficient if an algorithm works properly and
yields desired results. A single problem can be solved in many different ways, and hence
it is possible to design several algorithms to perform the same job. However, when
algorithms are executed (in the form of a program) it uses the computer’s resources (the

CPU time, the memory etc.) to perform operations and its memory to hold the program
O —
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and data. An algorithm, which consumes lesser resource, is indeed a better one. Hence,
the process of “analyzing the algorithm” is an indispensable component in the study of
algorithms. Analysis of algorithms or performance analysis refers to the task of
determining how much computing time and storage an algorithm requires to run for

completion.

A straight forward method of analyzing an algorithm is by coding the algorithm
and then executing it for measuring the space and time requirements on a specific
computer for various data sets. This straight forward method, however, is costly, time
consuming and inconvenient. Hence, alternate methods.nced to be evolved i.e., one
should be able to arrive at the requirements going through the lines of the algorithm. To
do this, we keep in mind that each line of an algorithm gets converted to one/more
instructions (operations) to the computer. Hence, by counting such instructions (or
operations) one can approximate the time required. Similarly the various data structures
provide information about the amount of storage space necessary.

But, in real pragmatic situations, an algorithm is normally quite lengthier and
involves several loops, so that ‘actual count’ may become unbelievably different and
unanticipated. It should be noticed that the instructions themselves are of different types,
(involving arithmetic operations, logical operations, simple data movement etc). Certain
operations like division and multiplication take longer times than operations like addition,
subtraction and data movement. Having obtained the final count, it is not really possible
to decide the exact time required by the algorithm, but can be thought of as a fair
approximation. Identifying the more complex and essential operations or functions and
the time required for them is also a way of analyzing since the time required for simple
instructions become negligible for lengthier algorithms. (Note that we are more interested
in comparing an algorithm with another instead of actually evaluating them with respect
to their costs. Hence, these approximations most often do not affect our final judgment).
Thus, the problem of analyzing algorithms reduces to identifying the most costly
instructions and summing up the time required by them. A given algorithm may work
very efficiently with a few data sets, but may become sluggish with others. Hence, the
choice of sufficient number of data sets, representing all possible cases becomes

important, while analyzing an algorithm.
e ——————
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If there is more than one possible way of solving a problem, then one may think
of more than one algorithm for the same problem. Hence, it is necessary to know in what
domains these algorithms are applicable. Data domain is an important aspect to be known
in the field of algorithms. Once we have more than one algorithm for a given problem,
how do we choose the best among them? The solution is to devise some data sets and
determine a performance profile for each of the algorithms. A best case data set can be
obtained by having all distinct data in the set. But, it is always complex to determine a
data set, which exhibits some average behavior, for all kinds of algorithms.

Analysis of algorithms is a challenging area, which needs great mathematical
skills. Usage of mathematics allows us to make a quantitative judgment about the value
of an algorithm. This quantitative value can be used to select the best one out of many
algorithms designed to solve the same problem. In order to obtain this quantitative value,
an algorithm can be analyzed at two different stages. An algorithm can be analyzed just
by looking in to the algorithm i.e., without executing the algorithm. This type of
analyzing is called a priori analysis. In this type of analysis, one obtains a function (of
some relevant parameters), which bounds the computing time of the algorithm. That is
we get a lower limit and an upper such that the computing time of the algorithm always
lies in between these limits irrespective of the nature of the data sets. In the case of
complex algorithm, analyzing and determining the parameters for time and space
consumption, without actually executing the program is a challenging one. On the other
hand the algorithm can be tested through its execution and the actual time memory
required can be determined.

This way of knowing the performance of the algorithm is called a posteriori
analysis. In this analysis, we obtain statistics, by running the program and hence we get
the accurate cost of the algorithm’s execution. When compared to a priori analysis, the a
posteriori analysis can easily be comprehended. Thus, we feel it is better to understand
more about the a posteriori analysis with an example.

To begin with, we note that the actual time taken for execution depends on the
computer on which it is run — which we do not know at present. Also, most often, the
time taken by the algorithm depends on the number of data items. It is illogical to expect

the algorithm to take the same (or even similar) quantum of execution time, when it is

m
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operating with say 10 data items and again with 10,000 data items. Hence, the most
important step in a priori analysis is identifying statements which consume more time.
Such statements can be selected because they are complex like, division/multiplication or
because they get executed many times or more often both. Based on these we can arrive
at a sort of approximation to the actual execution time.
Consider the following examples:
a) X+« y*z
b) Fori« ltondo
X « y*z
For end
¢) Forj « 1ltondo
Fori « 1ltondo
X « y*z
Forend
Forend

We do not actually know what is the time taken for multiplication, but we can
assume that the example (a) takes one unit of time, (b) takes n units of time (because it
gets executed n times or it’s frequency count is n and the example (c) takes n’ units of
time (gets executed n * n time or it’s frequency count is n2). These values of 1, n and n’,
are said be in increasing order of magnitude.

Philosophically, the above can be interpreted as follows. To travel a given
distance, a plane takes negligible time, motor car takes some time, a cycle takes much
longer, a person walking takes even more time. While one can clearly see that the actual
time taken depends on the distance and also the actual speeds of the vehicles in question,
their “orders” are fixed. Given the orders, we directly say the plane takes the least time
and the walker takes the maximum time. This is a priori analysis and thus requires a lot of
a priori knowledge about the data and the functionalities.

To actually find the time taken by algorithms, it is necessary to execute them
actually and note the timings. However, to make things complex, the performance of an
algorithm often depends on the type of the inputs and the order in which they are given.
Hence, the performance of an algorithm cannot be labeled by one value, but often
requires three different cases like best case performance, average case performance and

worst case performance.
LSS - ___]
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Despite the fact that two different algorithms to solve the same problem are
represented by order notations, it is not always possible to say which among those is the
best one. For instance, consider the problem of finding out the sum of first n natural

numbers. Following are the two algorithms to achieve the same.
Algorithm: A
Input: n, an integer
Output: S, sum of first n natural numbers
Method:
S=0;
For=1ltondo
S=S+i1
For end
Prt S
Algorithm ends

Algorithm: B
Input: n. an integer
Output: S, sum of first n natural numbers
Method:
S=0;
S=(o*(r+1))2:
Prnt S
Algorithm ends

Although, both the algorithms A and B accomplish the same desired task of finding out
the sum of first n natural numbers, they have their own behaviors. Let us assume that all
the arithmetic operations take equal time (one unit) and let us also assume the assignment

operation takes negligible time when compared to any arithmetic operations and hence

Analysis and Design of Algorithms ogd



can be neglected. According to this assumption the algorithm A takes, for a given n value,
n unit of time (“for’ loop runs n times) while the algorithm B takes always, exactly 3 unit

of time (one addition, one multiplication and one division), irrespective of n value.

n n
Time :
Time
Taken Taken
1 A 1 n ’

(2) (®)

Fig. 1.1 Graph of time taken by algorithm A and B

If we plot the graph of the time taken by both the algorithms A and B, then the graph of
A is linearly increasing graph(See Fig.1.1(a)) and the graph of B is a constant graph (See
Fig.1.1(b)).

Therefore, it shall be noticed that the behavior (time taken by) of the algorithm A
depends on the value of n and the behavior of (time taken by) the algorithm B is
independent of n value. Therefore, one may feel that the algorithm B is always preferred
to the algorithm A. However, it shall be noticed that the algorithm B is not as simple as
the algorithm A from the point of view of understanding its functionality as one should
have familiarity with the formula in case of algorithm B. That is what we say tradeoff

between simplicity and efficiency.

1.4 NOTATION FOR PROGRAMS

It is important to decide how we are going to describe our algorithms. If we try to

explain them in English, we rapidly discover that natural languages are not at all suited to

m
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this kind of thing. To avoid confusion, we shall in future specify our algorithms by giving
a corresponding program. We assume that the reader is familiar with at least one well-
structured programming language such as Pascal. However, we shall not confine
ourselves strictly to any particular programming language: in this way, the essential
points of an algorithm will not be obscured by relatively unimportant programming
details, and it does not really matter which well-structured language the reader prefers.

A few aspects of our notation for programs deserve special attention. We use
phrases in English in our programs whenever this makes for simplicity and clarity.
Similarly, we use mathematical language, such as that of algebra and set theory,
whenever appropriate-including symbols such as and Li introduced in Section 1.4.7. As a
consequence, a single "instruction" in our programs may have to be translated into
several instructions-perhaps a while loop-if the algorithm is to be implemented in a
conventional programming language. Therefore, you should not expect to be able to run
the algorithms we give directly: you will always be obliged to make the necessary effort
to transcribe them into a "real" programming language. Nevertheleés, this approach best
serves our primary purpose, to present as clearly as possible the basic concepts
underlying our algorithms.- .

To simplify our programs further, we usually omit declarations of scalar
quantities (integer, real, or Boolean). In cases where it matters-as in recursive functions
and procedures-all variables used are implicitly understood to be local variables, unless
the context makes it clear otherwise. In the same spirit of simplification, proliferation of
begin and end statements, that plague programs written in Pascal, is avoided: the range
of statements such as if, while, or for, as well as that of declarations such as procedure,
function, or record, is shown by indenting the statements affected. The statement return
marks the dynamic end of a procedure or a function, and in the latter case it also
supplies the value of the function.

We do not declare the type of parameters in procedures and functions, nor the
type of the result returned by a function, unless such declarations make the algorithm
easier to understand. Scalar parameters are passed by value, which means they are treated
as local variables within the procedure or function, unless they are declared to be var
parameters, in which case they can be used to return a value to the calling program. In
Analysis and Design of Algorithms 10



contrast, array parameters are passed by reference, which means that any modifications
made within the procedure or function are reflected in the array actually passed in the
calling statement.

Finally, we assume that the reader is familiar with the concepts of recursion,
record, and pointer. The last two are denoted exactly as in Pascal, except for the
omission of begin and end in records. In particular, pointers are denoted by the symbol
wpn

To wrap up this section, here is a program for multiplication. Here + denotes
integer division: any fraction in-the answer is discarded. We can compare this program to
the informal English description of the same algorithm.
function Multiply(m, n)

result «— 0

repeat

if m is odd then result « result + n
mem=2
me«n+n

until m = 1

-return result

1.5 TIME COMPLEXITY

The number of (machine) instructions which a program executes during its
‘running time is called its time complexity in computer science. This number depends
primarily on the size of the program's input, that is approximately on the number of the
strings to be sorted (and their length) and the algorithm used. So approximately, the time
complexity of the program “sort an array of n strings by minimum search” is described
by the exprmsiaﬁ cn’. ¢ is a constant which depends on the programming language used,
on.the quality of the compiler or interpreter, on the CPU, on the size of the main memory
-and the access time to it, on the knowledge of the programmer, and last but not least on

the algorithm itself, which may require simple but also time consuming machine
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instructions. (For the sake of simplicity we have drawn the factor 1/2 into c here.) So
while one can make ¢ smaller by improvement of external circumstances (and thereby

often investing a lot of money), the term n’, however, always remains unchanged.

1.6 SPACE COMPLEXITY

The better the time complexity of an algorithm is, the faster the algorithm will
carry out his work in practice. Apart from time complexity, its space complexity is also
important: This is essentially the number of memory cells which an algorithm needs. A
good algorithm keeps this number as small as possible, too.

There is often a time-space-tradeoff involved in a problem, that is, it cannot be
solved with few computing time and low memory consumption. One then has to make a
compromise and to exchange computing time for memory consumption or vice versa,

depending on which algorithm one chooses and how one parameterizes it.

1.7 ASYMPTOTIC NOTATIONS

Asymptotic notation is a method of expressing the order of magnitude of an
algorithm during the a priori analysis. These order notations do not takc into account all
program and machine dependent factors i.e., given an algorithm, if it is realized and
executed with the aid of different programming languages, then it is obvious to find
different performance response for the same algorithm. In addition, if the same program
is run on different computers, although the machine speeds are same, their performances
may differ. But, the a priori analysis will not have these variations. There are several

kinds of mathematical notations that are used in asymptotic representations.

Definition: f(n) = O(g(n)) (read as “f of n equals big oh of g of n”), if and only if there
exist two positive, integer constants ¢ and np such that

ABS(f(n)) < C*ABS(g(n)) for alln > ng

#
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In other words, suppose we are determining the computing time, f(n) of some
algorithm where n may be the number of inputs to the algorithm, or the number of
outputs, or their sum or any other relevant parameter. Since f(n) is machine dependent (it
depends on which computer we are working on). An a priori analysis cannot determine
f(n), the actual complexity as described earlier. However, it can determine a g(n) such
that f(n)=0(g(n)). An algorithm is said to have a computing time O(g(n)) (of the order of
g(n)), if the resulting times of running the algorithm on some computer with the same
type of data but for increasing values of n, will always be less than some constant times
lg(n)]. We use some polynomial of n, which acts as an upper limit, and we can be sure
that the algorithm does not take more than the time prescribed by the upper limit. For

instance, let us consider the following algorithm,

Algorithm: Sum
Input: n, number of values to be added

A, array of n elements
Output: S, sum of n elements in A
Method :

(1) S=0;

(2) Forr=1tondo

@) s=s+A[i]
For end

(4) OutputS;
Algorithm ends.

I_n the above algorithm, statement (1) is executed 1 time, statement (2) is executed n+1
times, statement (3) is executed n times, and statement (4) is executed 1 time. Thus, the
total time taken is 2n+3.

In order to represent the time complexity of the above algorithm as f(n)=0O(n), it is
required to find the integer constants ¢ and n0, which satisfy the above definition of O
notation. i.e., an algorithm with the time complexity 2n + 3 obtained from a priori
analysis can be represented as O(n) because 2n + 3 < 3n for all n > 3 here ¢=3 and ng= 3.

Some more examples:

Ansis and Design of Aorithms - = e @3



The function 3n +2 =0(n) as 3n + 2 <4n foralln > 2.
3n+3=0(n)as3n+3<4nforalln>3.
10n*+ 4n + 2 = O(n®) as 10n*+4n +2 < 11n* foralln > 5.
6*2"+n’=0(n%) as 6 * 2"+ n’< 7 * 2" for all n > 4.

The most commonly encountered complexities are O(1), O(log n), O(n), O(n log
n), O(n?), O(n*) and O(2"). Algorithms of higher powers of n are seldom solvable by
simple methods. O(1) means a computing time that is constant. O(n) is called linear,
O(n?) is called quadratic, O(n®) is called cubic and O(2") is called exponential. The
commonly used complexities can thus be arranged in an increasing order of complexity

as follows.

0O(1) < O(log n) < O(n) < O(n log n) <O(n*) < O(r’) <O(27)

If we substitute different values of n and plot the growth of these functions, it
becomes obvious that at lower values of n, there is not much difference between them.
But as n increases, the values of the higher powers grow much faster than the lower ones
and hence the difference increases. For example at n = 2, 3, 4, ..., 9 the values of 2"
happens to be lesser than n® but once n >10, 2" shows a drastic growth.

The O - notation discussed so far is the most popular of the asymptotic notations
and is used to define the upper bound of the performance of an algorithm also referred to
as the worst case performance of an algorithm. But it is not the only complexity we have.
Sometimes, we may wish to determine the lower bound of an algorithm i.e., the least

value, the complexity of an algorithm can take. This is denoted by £ (omega).

Definition: f(n) = Q(g(n)) (read as “f of n equals omega of g of n) if and only if there
exist positive non-zero constants C and no, such that for all ABS(f(n)) = C*ABS(g(n)) for
all n = ny. '
Some Examples: The function 3n+2=Q(n)as3n+22 3n'for n=l.
3n+3=Q(n)as3n+3>3nforn=>1.

10n*+ 4n +2 = Q(n’) as 10n*+ 4n + 2 2 n’forn’2 1.

100+ 4n + 2 = Q(n) as 10n®+ 4n + 2 = n for n 21.

10n%+ 4n +2 = Q(1) as 10n*+4n + 2 > 1 for n 21.
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In some cases both the upper and lower bounds of an algorithm can be the same. Such a
situation is described by the 6-notation.

Definition: f(n) = 8(g(n)) if and only if there exist positive constants C;, C; and ng such
that for all n > ng, C; |g(n)| < f(n) < C; |g(n)| .

Some Examples: 3n +2=0(n)as3n+2>3nforalln>2and3n+2<4nforalln=2,

soC;=3and C;=4 and np = 2.

1.8 SUMMARY

In this unit, we have introduced algorithms. A glimpse of all the phases we should
go through when we study an algorithm and its variations was given. In the study of
algorithms, the process of designing algorithms, validating algorithms, analyzing
algorithms, coding the designed algorithms, verifying, debugging and studying the time
involved for execution were presented. All in all, the basic idea behind the analysis of

algorithms is given in this unit.

1.9 KEYWORDS

1) Algorithm
2) Space complexity
3) Time complexity

4) Asymptotic notation

1.10 QUESTIONS FOR SELF STUDY

1) What is an algorithm? Explain its characteristics?

2) What is meant by analysis of algorithms? Why is it needed?

3) What is meant by space complexity and time complexity of an algorithm?
Explain.

4) What is meant by asymptotic notation? Explain.
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1.11 EXCERCISES

1) Design algorithms for the following and determine the frequency counts for

all statements in the devised algorithms and express their complexities with

the help of asymptotic notations.

a)

b)

i)

To test whether the three numbers represent the sides of a right angle
triangle.

To test whether a given point p(x, y) lies on x-axis or y-axis or in
I/II/II/IV quadrant.

To compute the area of a circle of a given circumference

To locate a specific word in a dictionary.

To find the first n prime numbers.

To add two matrices.

To multiply two matrices.

To search an element for its presence/absence in a given list of random
data elements without sorting the list.

To find the minimum and maximum in the given list of data elements

without sorting the list.
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UNIT- 2

PRACTICAL COMPLEXITIES AND
PERFORMANCE MEASUREMENT

STRUCTURE

2.0 Objectives

2.1 Introduction

2.2 How to test Algorithms
2.3 Performance Measurement
2.4 Practical Complexities

2.5 Summary

2.6 Keywords

2.7 Questions

2.8 Exercise

2.9 Reference

2.0 OBJECTIVES

After studying this unit you should be able to
= Explain how test algorithms.
= Measure the performance of an algorithm.

* Determine how the time requirements vary as the instance characteristics

change.

e —————
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2.1 INTRODUCTION

Performance measurement is the process of executing a correct program on
different data sets to measure the time and space that it takes to compute the results.

Complexity of a program is generally some function of the instance characteristics.

2.2 HOW TO TEST ALGORITHMS?

The ultimate test is performed to ensure that the program developed on the basis
of the designed algorithm, runs satisfactorily. Testing a program involves two phases viz.,
debugging and profiling. Debugging is the process of executing a proéram with sample
datasets to determine if the results obtained are satisfactory. When unsatisfactory results
are generated, suitable changes are to be incorporated in the program to get the desired
results. However, it is pointed out that “debugging can only indicate the presence of
errors but not their absence” i.e., a program that yields unsatisfactory results on a sample
data set is definitely faulty, but on the other hand a program producing the desirable’
results on one/more data sets need not be correct. In order to actually prove that a
program is perfect, a process of “proving” is necessary wherein the program is
analytically proved to be correct and in such cases, it is bound to yield perfect results for
all possible sets of data.

On the other hand, profiling or performance measurement is the process of
executing a correct program on different data sets to measure the time and space that it
takes to compute the results. that several different programs may do a given job‘
satisfactorily. But often, especially when large data sets are being operated upon, the'
amount of space and the computation time required become important. In fact, a major
portion of the study of algorithms pertains to the study of time and space réquirements of
algorithms. The following section discusses the actual way of measuring the performance

of an algorithm.

M
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2.3 PROFILING (Performance Measurement)

This is the final stage of algorithm evaluation. A question to be answered when
the program is ready for execution, (after the algorithm has been devised, made a priori
analysis of that, coded into a program debugged and compiled) is how do we actually
evaluate the time taken by the program? Obviously, the time required to read the input
data or give the output should not be taken into account. If somebody is keying in the
input data through the keyboard or if data is being read from an input device, the speed of
operation is dependent on the speed of the device, but not on the speed of the algorithm.
So, we have to exclude that time while evaluating the programs. Similarly, the time to
write out the output to any device should also be excluded. Almost all systems provide a
facility to measure the elapsed system time by using stime() or other similar functions.
These can be inserted at appropriate places in the program and they act as stop clock
measurement. For example, the system time can be noted down just after all the inputs
have been read. Another reading can be taken just before the output operations start. The
difference between the two readings is the actual time of run of the program. If multiple
inputs and outputs are there, the counting operations should be included at suitable places
to exclude the I/O operations. '

' It is not enough if this is done for one data set. Normally various data sets are
choéen and the performance is measured as explained above. A plot of data size n v/s the
actual time can be drawn which gives an insight into the performance of the algorithm.

~ The entire procedure explained above is called “profiling”. However,
unfortunately, the times provided by the system clock are not always dependable. Most
oﬁgp. they are only indicative in nature and should not be taken as an accurate
measurement. Especially when the time durations involved are of the order of 1-2
nﬁlﬁseconds, the figures tend to vary often between one run and the other, even with the
same program and all same input values.

Irrespective of what we have seen here and in the subsequent discussions,
devising algorithms is both an art and a science. As a science part, one can study certain
standard methods (as we do in this course) but there is also an individual style of
programming which comes only by practice.
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2.4 PRACTICAL COMPLEXITIES

We have seen that the time complexity of a program is generally some
function of the instance characteristics. This function is very useful in
determining how the time requirements vary as the instance characteristics change.
We can also use the complexity function to compare two programs P and Q that
perform the same task. Assume that program P has complexity & (n) and that
program Q has complexity (n®). We can assert that, program P is faster than
program Q is for sufficiently large n. To see the validity of this assertion,
observe that the actual computing time of P is bounded from above by cn for
some constant ¢ and for all n n > nl, while that of Q is bounded from below by
dn2 for some constant d and all n, n>n;. Since ¢n<dn? for n2>c/d, program P is

faster than program Q whenever n2 max{n;,nz, ¢/d).

One should always be cautiously aware of the presence of the phrase
sufficiently large in the as assertion of the preceding discussion. When deciding
which of the two programs to use, we must know whether the n we are dealing
with is, in fact, sufficiently large. If program P actually runs in 10°n milliseconds
while program Q runs in n’ milliseconds and if we always have n< 10°, then

program Q is the one to use.

To get a feel for how the various functions grow with n, you should study
figures 2.1 and 2.2. These figures show that 2" grows very rapidly with n. In fact,
if a program needs 2" steps for execution, then when n = 40, the number of
steps needed is approximately 1.1*10"2. On a computer performing
1.000.000,000 steps per second, this program would require about 18.3 minutes.
If n = 50, the same program would run for about 13 days on this computer.
When n = 60, about 310.56 years will be required to execute the program, and
when n = 100, about 4*10"? years will be needed. We can conclude that the utility

of programs with exponential complexity is limited to small n (typically n < 40).
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logn || n || nlogn n? n* -
0 1| 0 1 1 2
1 2 2 4 8 4
2 1 8 16 64 16
3 8 24 64 512 256
4|l 16 64 256 4096 65,536
5t 32 160 1024 32,768 4,294,967,296

Figure 2.1 values of various functions

Programs that have a complexity that is a high-degree polynomial are
also of limited utility. For example, if a program needs n'® steps, then our
1.000,000,000 steps per second computer needs 10 seconds when n = 10;
3171 years when n = 100; and 3.17 + 1013 years when n = 1000. If the
program's complexity had been n® steps instead, then the computer would
need 1 second when n = 1000, 110.67 minutes when n = 10,000 and 11.57
days when n = 100,000.

Figure 2.2 Plot of various functions
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Figure 2.2 above gives the time that a 1,000,000,000 instructions per second
computer needs to execute a program of complexity f (n) instructions. One should
note that currently only the fastest computers can execute about 1.000,000,000
instructions per second. From a practical standpoint, it is evident that for

reasonably large n only programs of small complexity are feasible.

2.5 SUMMARY

In this unit, we have introduced algorithms. A glimpse of all the phases we should
go through when we study an algorithm and its variations was given. In the study of
algorithms, the process of designing algorithms, validating algorithms, analyzing
algorithms, coding the designed algorithms, verifying, debugging and studying the time
involved for execution were presented. All in all, the basic idea behind the analysis of

algorithms is given in this unit.

2.6 KEYWORDS

1) Algorithm

2) Space complexity
3) Time complexity
4) Asymptotic notation
5) Profiling

2.7 QUESTIONS FOR SELF STUDY

1) What is an algorithm? Explain its characteristics?
2) How to test algorithms? Why is it needed?
3) Explain Practical complexities of algorithms?

4) What is meant by profiling? Explain.




2.8 EXCERCISES

1) How do we actually evaluate the time taken by the program?

2) Discuss about the Practical complexities considering few example functions.

2.9 REFERENCES

1) Fundamentals of Algorithmics: Gilles Brassard and Paul Bratley, Prentice Hall
Englewood Cliffs, New Jersey 07632.
2) Sartaj Sahni, 2000, Data structures, Algorithms and Applications in C++,
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3) Goodman And Hedetniemi, 1987, Introduction to the Design and Analysis of
Algorithms, Mcgraw Hill International Editions. :
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UNIT- 3
ANALYZING CONTROL STRUCTURES,
USING A BAROMETER, SUPPLEMENTARY
EXAMPLES )

STRUCTURE

3.0 Objectives

3.1 Introduction

3.2 Analyzing Control Structures
3.3 Using a Barometer

3.3 Supplementary examples

34 Summary

3.5 Keywords

3.6 Questions

3.7 Exercise

3.8 Reference

3.0 OBJECTIVES

After studying this unit you should be able to
= Analyze Control Structures.
= Analyze algorithms using Barometer.

= Evaluate recursive algorithms.

e ———
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3.1 INTRODUCTION

When you have several different algorithms to solve the same problem, you have
to decide which one is best suited for your application. An essential tool for this purpose
is the analysis of algorithms. Only after you have determined the efficiency of the various
algorithms you will be able to make a well-informed decision. But there is no magic
formula for dnalyzing the efficiency of algorithms. It is largely a matter of judgement,
intuition and experience. Nevertheless, there are some basic techniques that are often
useful, such as knowing how to deal with control structures and recurrence equations.

This unit covers the most commonly used techniques and illustrates them with examples.

3.2 ANALYZING CONTROL STRUCTURES

The analysis of algorithms usually proceeds from the inside out. First, we
determine the time required by individual instructions (this time is often bounded by a
constant); then we combine these times according to the control structures that combine
the instructions in the program. Some control structures such as sequencing - putting one
instruction after another - are easy to analyze whereas others such as while loops are
more subtle. In this unit, we give general principles that are useful in analyses involving
the most frequently encountered control structures, as well as examples of the application

of these principles.

Sequencing

Let P, and P, be two fragments of an algorithm. They may be single instructions
or complicated sub algorithms. Let t; and t; be the times taken by P; and P, respectively.
These times may depend on various parameters, such as the instance size. The
sequencing rule says that the time required to compute "P,; P, ", that is first P and then
P, is simply t; + t;. By the maximum ru!;, this time is in 6 (max (t;, t;)). Despite its
simplicity, applying this rule is sometimes less obvious than it may appear. For example,

it could happen that one of the parameters that control t; depends on the result of the
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computation performed by P,. Thus, the analysis of ” Py; P;" cannot always be performed
by considering P, and P; independently.
"For" loops
For loops are the easiest loops to analyse. Consider the following loop.
for i — 1 to mdo P(i)
Here and throughout the book, we adopt the convention that when m = 0 this is not an
error; it simply means that the controlled statement P(i) is not executed at all. Suppose
this loop is part of a larger algorithm, working on an instance of size n. (Be careful not to
confuse m and n.) The easiest case is when the time taken by P(i) does not actually
depend on i, although it could depend on the instance size or, more generally, on the
instance itself. Let # denote the time required to compute P(i). In this case, the obvious
analysis of the loop is that P(i) is performed m times, each time at a cost of 7, and thus the
total time required by the loop is simply / = mt. Although this approach is usually
adequate, there is a potential pitfall: we did not take account of the time needed for loop
control. After all, for loop is shorthand for something like the following while loop.
i—1
while i < m do
P(i)
i—i+1
In most situations, it is reasonable to count at unit cost the test i < m, the instructions
i «— 1and i« i+ 1,and the sequencing operations (go to) implicit in the while loop. Let
¢ be an upper bound on the time required by each of these operations. The time / taken by
the loop is thus bounded above by
% ¢ fori«1

+(m+1)c forthetestsi<m

+ mt for the executions of P(i)

+ mc for the executions of i «— i + 1

+ mc for the sequencing operations
< (t+3c)m+ 2c.

Moreover this time is clearly bounded below by mt. If ¢ is negligible compared tast;:our
previous estimate that f is roughly equal to m¢ was therefore justified, except for one

crucial case: 4/ = mt is completely wrong when m = 0 (it is even worse if m is negative!).
. ]
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Resist the temptation to say that the time taken by the loop is in 8(mz) on the
pretext that the O notation is only asked to be effective beyond some threshold such as
m > 1. The problem with this argument is that if we are in fact analyzing the entire
algorithm rather than simply the for loop, the threshold implied by the 6 notation
concerns n, the instance size, rather than m, the number of times we go round the loop,
and m = 0 could happen for arbitrarily large values of n. On the other hand, provided ¢ is
bounded below by some constant (which is always the case in practice), and provided

there exists a threshold no such that m >1 whenever n = n,.

The analysis of for loops is more interesting when the time #(i) required for P(i)
varies as a function of i. (In general, the time required for P(i) could depend not only on i
but also on the instance size n or even on the instance itself.) If we neglect the time taken
by the loop control, which is usually adequate provided m > 1, the same for loop
fori« 1tomdo P(i)

takes a time given not by a multiplication but rather by a sum: it is *:’;1 t(”. We
illustrate the analysis of for loops with a simple algorithm for computing the Fibonacci
sequence as shown below.
function Fibiter(n)
i—1;j—0
fork«<1tondo je—i+j
ie—j-i
return j
If we count all arithmetic operations at unit cost, the instructions inside the for loop take
constant time. Let the time taken by these instructions be bounded above by some
constant c. Not taking loop control into account, the time taken by the for loop is bounded
above by n times this constant: nc. Since the instructions before and after the loop take
negligible time, we conclude that the algorithm takes a time in O(n). Similar reasoning
yields that this time is also in O(n), hence it is in 0((n). We know that it is not reasonable
to count the additions involved in the computation of the Fibonacci sequence at unit cost
unless n is very small. Therefore, we should take account of the fact that an instruction as
simple as "j - i + j " is increasingly expensive each time round the loop. It is easy to

L ]
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program long-integer additions and subtractions so that the time needed to add or subtract
two integers is in the exact order of the number of figures in the larger operand. To
determine the time taken by the k" trip round the loop, we need to know the length of the
integers involved. We can prove by mathematical induction that the values of i and j at
the end of the k-th iteration are fi.; and f;, respectively. This is precisely why the
algorithm works: it returns the value of j at the end of the n™ iteration, which is therefore £
as required. Moreover, the Moivre's formula tells us that the size of f; is in 0(k). Therefore,
the k™ iteration takes a time 0 (k - 1) +0 (k), which is the same as 8(k). Let ¢ be a constant
such that this time is bounded above by ck for all £ > 1. If we neglect the time required
for the loop control and for the instructions before and after the loop, we conclude that

the time taken by the algorithm is bounded above by

4 . nin+1
dck=cd k=c———— €0(n?).
k=1 k=1 2

Similar reasoning yields that this time is in Q(n ? ), and therefore it is in O(n 2 ). Thus it
makes a crucial difference in the analysis of Fibrec whether or not we count arithmetic
operations at unit cost.
The analysis of for loops that start at a value other than 1 or proceed by larger steps
should be obvious at this point. Consider the following loop for example.
for i « 5 to m step 2 do P(i)

Here, P(i) is executed ((m - 5) + 2) + 1 times provided m = 3. (For a for loop to make
sense, the endpoint should always be at least as large as the starting point minus the step).
Recursive calls

The analysis of recursive algorithms is usually straightforward, at least up to a
point. Simple inspection of the algorithm often gives rise to a recurrence equation that
"mimics" the flow of control in the algorithm. Once the recurrence equation has been
obtained, some general techniques can be applied to transform the equation into simpler
nonrecursive asymptotic notation. As an example, consider the problem of computing the
Fibonacci sequence with the recursive algorithm Fibrec.

function F7brec(n)

if 7 <2 then return »
else return F7brec(n-1) + Fibrec(in-2)

e ————
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Let T(n) be the time taken by a call on Fibrec(n). If n < 2, the algorithm simply
returns n, which takes some constant time a. Otherwise, most of the work is spent in the
two recursive calls, which take time 7(n -/) and T(n - 2), respectively. Moreover, one
addition involving f,.; and f,.» (which are the values returned by the recursive calls) must
be performed, as well as the control of the recursion and the test "if n < 2". Let h(n) stand
for the work involved in this addition and control, that is the time required by a call on
Fibrec (n) ignoring the time spent inside the two recursive calls. By definition of 7(n) and

h(n), we obtain the following recurrence.

a if n=00r n=1

TY ) =
() {T (7=1)+7(7=2)+ /() otherwise

If we count the additions at unit cost, h(n) is bounded by a constant and we
conclude that Fibrec(n) takes a time exponential in n. This is double exponential in the
size of the instance since the value of n is exponential in the size of n.

If we do not count the additions at unit cost, h(n) is no longer bounded by a
constant. Instead A(n) is dominated by the time required for the addition of f,_,and f, .,
for sufficiently large n. We know that this addition takes a time in the exact order of n.
Therefore h(n) € 6(n). Surprisingly, the result is the same regardless of whether & (n) is
constant or linear: it is still the case that T (n) € @ (fn). In conclusion, Fibrec(n) takes a
time exponential in n whether or not we count additions at unit cost! The only difference

lies in the multiplicative constant hidden in the  notation.

""While'" and "'repeat' loops

While and repeat loops are usually harder to analyze than for loops because there
is no obvious a priori way to know how many times we shall have to go round the loop.
The standard technique for analyzing these loops is to find a function of the variables
involved whose value decreases each time around. To conclude that the loop will
eventually terminate, it suffices to show that this value must be a positive integer. (You
cannot keep decreasing an integer indefinitely.) To determine how many times the loop is

repeated, however, we need to understand better how the value of this function decreases.

saa———————————____——— ]
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An alternative approach to the analysis of while loops consist of treating them like

recursive algorithms. The analysis of repeat loops is carried out similarly.

We shall study binary search algorithm, which illustrates perfectly the analysis of
while loops. The purpose of binary search is to find an element x in an array T [1 .. n ]
that is in nondecreasing order. Assume for simplicity that x is guaranteed to appear at
least once in T. We require to find an integer i such that 1 <i < n and T [i] = x. The basic
idea behind binary search is to compare x with the element y in the middle of 7. The
search is over if x = y; it can be confined to the upper half of the array if x > y; otherwise,
it is sufficient to search the lower half. We obtain the following algorithm.

function Binary_Searc/(I[1..1]. x)
Fre—1. j&m
while /< /do
e (71 ) +2:
case vy< J[4]: j« A- 1.
case v= J[A]: /. j« A {return /}:
case.x> 7[A]: /e A+ 1.
return 7
Recall that to analyze the running time of a while loop, we must find a function of the
variables involved whose value decreases each time round the loop. In this case, it is
natural to consider j - i + 1, which we shall call d. Thus d represents the number of
elements of T still under consideration. Initially, d = n. The loop terminates when i 2 j,

which is equivalent to d < 1. Each time round the loop, there are three possibilities: either

jissetto k-1, iis setto k + 1, or both i and j are set to k. Let 4 and d stand respectively
for the value of j - i + 1 before and after the iteration under consideration. We use i, j, T
and j similarly. If x < T[], the instruction "j« k - 1" is executed and thus , i =i and

=[G +j) +2] -1. Therefore,

-

d=j-i+1=j=(i+ N+2< j-(G+/j-1)i2=4di2
Similarly, if x > TTk], the instruction "i « k + 1" is executed and thus
f=[(i+j)+2]+1landj=j

J:}‘-}‘+1=_/’-(1’+ N+2g j-G+j-1)I12=4di2




Finally, if x = T [k], then i and j are set to the same value and thus d=1;butd

was at least 2 since otherwise the loop would not have been reentered. We conclude that

d s d /2 whichever case happens, which means that the value of d is at least halved
each time round the loop. Since we stop when d < 1, the process must eventually stop, but
how much time does it take?

To determine an upper bound on the running time of binary search, let d; denote
the value of j - i + 1 at the end of the I™ trip round the loop for ! > 1 and let d, = n. Since
dy - 1 is the value of j - i + I before starting the /™ iteration, we have proved that
dy <dy /2 for all [ > 1. It follows immediately by mathematical induction that d; <n / 2".
But the loop terminates when d < 1, which happens at the latest when [ = [lg n]. We
conclude that the loop is entered at most [lg n] times. Since each trip round the loop takes
constant time, binary search takes a time in O(log n). Similar reasoning yields a matching
lower bound of Q(log n) in the worst case, and thus binary search takes a time in 0 (log n).
This is true even though our algorithm can go much faster in the best case, when x is

situated precisely in the middle of the array.

3.3 USING A BAROMETER

The analysis of many algorithms is significantly simplified when one instruction
or one test-can be singled out as barometer. A barometer instruction is one that is
executed at least as often as any other instruction in the algorithm. (There is no harm if
some instructions are executed up to a constant number of times more often than the
barometer since their contribution is absorbed in the asymptotic notation). Provided the
time taken by each instruction is bounded by a constant, the time taken by the entire
algorithm is in the exact order of the number of times that the barometer instruction is
executed.

This is useful because it allows us to neglect the exact times taken by each
instruction. In particular, it avoids the need to introduce constants such as those bounding
the time taken by various elementary operations, which are meaningless since they

depend on the implementation, and they are discarded when the final result is expressed
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in terms of asymptotic notation. For example, consider the analysis of Fibiter algorithm
when we count all arithmetic operations at unit cost. We saw that the algorithm takes a
time bounded above by cn for some meaningless constant ¢, and therefore that it takes a
time in @(n). It would have been simpler to say that the instruction j «— i + j can be taken
as barometer, that this instruction is obviously executed exactly n times, and therefore the
algorithm takes a time in 6(n). Selection sorting will provide a more convincing example
of the usefulness of barometer instructions in the next section.

When an algorithm involves several nested loops, any instruction of the innermost
loop can usually be used as barometer. However, this should be done carefully because
there are cases where it is necessary to take account of the implicit loop control. This
happens typically when some of the loops are executed zero times, because such loops do
take time even though they entail no executions of the barometer instruction. If this
happens too often, the number of times the barometer instruction is executed can be
dwarfed by the number of times empty loops are entered-and therefore it was an error to
consider it as a barometer. Consider for instance pigeon-hole sorting. Here we generalize
the algorithm to handle the case where the elements to be sorted are integers known to lie
between 1 and s rather than between 1 and 10000. Recall that 7T1. .n] is the array to be
sorted and U[1. .s] is an array constructed so that U[k] gives the number of times integer
k appears in 7. The final phase of the algorithm rebuilds 7' in nondecreasing order as
follows from the information available in U.

7«0
for A« 1 tosdo
while 7[4] =0 do
T 7i+1
T[]« £
Ul « UIA -1

To analyze the time required by this process, we use "U [k]" to denote the value
originally stored in U[k] since all these values are set to O during the process. It is
tempting to choose any of the instructions in the inner loop as a barometer. For each

value of k, these instructions are executed U[k] times. The total number of times they are

5
executed is therefore 2k=1 U[k]. But this sum is equal to n, the number of integers to

#
Analysis and Design of Algorithms 32



sort, since the sum of the number of times that each element appears gives the total
number of elements. If indeed these instructions could serve as a barometer, we would
conclude that this process takes a time in the exact order of n. A simple example is
sufficient to convince us that this is not necessarily the case. Suppose U[k] = 1 when k is
a perfect square and U[k] = O otherwise. This would correspond to sorting an array T
containing exactly once each perfect square between 1 and n?, using § = n* pigeon-holes.
In this case, the process clearly takes a time in Q(n®) since the outer loop is executed s
times. Therefore, it cannot be that the time taken is in 0(n). This proves that the choice of
the instructions in the inner loop as a barometer was incorrect. The problem arises
because we can only neglect the time spent initializing and controlling loops provided we
make sure to include something even if the loop is executed zero times.

The correct and detailed analysis of the process is as follows. Let a be the time
needed for the test U[k] # O each time round the inner loop and let b be the time taken by
one execution of the instructions in the inner loop, including the implicit sequencing
operation to go back to the test at the beginning of the loop. To execute the inner loop
completely for a given value of k takes a time 1 = (1 + U[k]) a + U[k] b, where we add 1
to U[k] before multiplying by a to take account of the fact that the test is performed each
time round the loop and one more time to determine that the loop has been completed.

The crucial thing is that this time is not zero even when U[k] = 0. The complete process

takes a time € T ziﬂl (d +ty) where ¢ and d are new constants to take account of the
time needed to initialize and control the outer loop, respectively. When simplified, this
expression yields ¢ + (a + d) s + (a + b) n. We conclude that the process takes a time in
0(n + 5). Thus the time depends on two independent parameters n and s; it cannot be
expressed as a function of just one of them. It is easy to see that the initialization phase of
pigeon-hole sorting also takes a time in € (n + s), unless virtual initialization is used in
which case a time in @(n) suffices for that phase. In any case, this sorting technique takes
a time in O(n + s) in total to sort n integers between 1 and s. If you prefer, the maximum
rule can be invoked to state that this time is in 6(max (n, s5)). Hence, pigeon-hole sorting
is worthwhile but only provided s is small enough compared to n. For instance, if we are

interested in the time required as a function only of the number of elements to sort, this

e ——
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technique succeeds in astonishing linear time if s € O(n) but it chugs along in quadratic
time when s € 6(n*).

Despite the above, the use of a barometer is appropriate to analyze pigeon-hole
sorting. Our problem was that we did not choose the proper barometer. Instead of the
instructions inside the inner loop, we should have used the inner-loop test “ U [k] #0 " as
a barometer. Indeed, no instructions in the process are executed more times than this test
is performed, which is the definition of a barometer. It is easy to show that this test is
performed exactly n + s times, and therefore the correct conclusion about the running
time of the process follows immediately without need to introduce meaningless constants.

In conclusion, the use of a barometer is a handy tool to simplify the analysis of

many algorithms, but this technique should be used with care.

3.3 SUPPLEMENTARY EXAMPLES

In this section, we study several additional examples of analyses of algorithms

involving loops, recursion, and the use of barometers.

Selection sort
Let‘s consider a selection sorting technique as shown below, which is a good example for
the analysis of nested loops.

procedure select(T[1..1])
fori —1ton-1do
minj — i;minx — T|i]
forj—i+1tondo
if T[jl< minx then minj - j
minx — T[j]

T[minj]— T[i]

T[i]— minx

Although the time spent by each trip round the inner loop is not constant, it takes longer
time when T[j] < minx and is bounded above by some constant ¢ (that takes the loop
control into account). For each value of i, the instructions in the inner loop are executed
n -(i + 1) +1 = n - i times, and therefore the time taken by the inner loop is ¢ (i) S (n - i) c.
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The time taken for the i-th trip round the outer loop is bounded above by b + ¢ () for an
appropriate constant b that takes account of the elementary operations before and after
the inner loop and of the loop control for the outer loop. Therefore, the total time spent by
the algorithm is bounded above by

n-1 n-1 n-1
b+(n-i)c= > (b+cn)-c ) i
=1 i=1 i=1
=(n-1)(b+cn)-cnin-1)/2

1 _l) L
-zcn +(b zcn b,

which is in o(n?). Similar reasoning shows that this time is also in Q(n?) in all cases, and
therefore selection sort takes a time in 6(n?) to sort n items.

The above argument can be simplified, obviating the need to introduce explicit
consﬁmts such as b and ¢, once we are comfortable with the notion of a barometer
instruction. Here, it is natural to take the innermost test "if T[j] < minx" as a barometer
and count the exact number of times it is executed. This is a good measure of the total
running time of the algorithm because none of the loops can be executed zero times (in
which case loop control could have been more time consuming than our barometer). The
number of times that the test is executed is easily seen to be

n-1 n n-1
> > 1=> (-1

i=1 j=i+l i=1

n-1
=> k=nn-1)/2
k=1

Thus the number of times the barometer instruction is executed is in 6(n%), which

automatically gives the running time of the algorithm itself.

Insertion Sort
Let’s consider one more sorting technique called Insertion Sort for analysis. The

procedure for insertion sorting is as shown below.
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procedure insert(T[1..n])
fori —2tondo
X=T{ikj—1-1
while j>0and x < T[jldo T[j+ 1] T[]
Joe ey
T[j+1)—x

Unlike selection sorting, the time taken to sort n items by insertion depends
significantly on the original order of the elements. Here, we analyze this algorithm in the
worst case. To analyze the running time of this algorithm, we choose as barometer the

number of times the while loop condition (j > 0 and x < T [}]) is tested.

Suppose for a moment that i is fixed. Let x = TTi], as in the algorithm. The worst
case arises when x is less than 77j] for every j between 1 and i - 1, since in this case we
have to compare x to 7Ti -1], TTi - 2],..., T[1] before we leave the while loop because j = 0.
Thus the while loop test is performed i times in the worst case. This worst case happens

for every value of 7 from 2 to n when the array is initially sorted into descending order.

S b
The barometer test is thus performed Z-:'=2 i=nn+1)/2-1 times in total, which
is in @(n”). This shows that insertion sort also takes a time in G(nz) to sort n items in the

Wworst case.

3.4 SUMMARY

In this unit, we discussed the techniques to analyze the complexity and
performance of algorithms. We analyzed the most frequently encountered control
structures such as sequencing, while loops, for loops and recursive calls to study the
complexity and performance of algorithms. We learnt that the use of a barometer is a
handy tool to simplify the analysis of many algorithms, but this technique should be used
with care. Additional examples are considered to analyze the algorithms involving loops,

recursion, and the use of barometers.

e
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3.5 KEYWORDS
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Control structures
Sequencing

For loops

While loops
Recursive calls
Barometer
Insertion sort
Selection sort

Time complexity

3.6 QUESTIONS FOR SELF STUDY

1)
2)
3)

4)

Explain various loop structures to be considered for analyzing algorithms.
How do you analyze recursive algorithms? Explain with an example.

How do you determine an upper bound on the running time of binary search
algorithm? Explain.

What is a barometer instruction? How is it useful to analyze an algorithm?

Explain with an example.

3.7 EXCERCISES

1) Analyze while loops considering Binary search algorithm

2) Analyze the time complexity of selection sort algorithm.

3)

Analyze the time complexity of insertion sort algorithm.
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UNIT-4
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AVERAGE CASE ANALYSIS, AMORTIZED
ANALYSIS, SOLVING RECURRENCES

—

STRUCTURE

4.0 Objectives

4.1 Average Case Analysis
4.2 Amortized Analysis
4.3 Solving Recurrences
44 Summary

4.5 Keywords

4.6 Questions

4.7 Exercise

4.8 Reference

4.0 OBJECTIVES

After studying this unit you should be able to
= Analyze average case analysis of algorithms.
* Determine the time complexity of algorithms using amortization scheme.

= Solve certain class of recurrences using characteristic equation.
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4.1 AVERAGE-CASE ANALYSIS

We saw that insertion sort takes quadratic time in the worst case. On the other
hand, it is easy to show that it succeeds in linear time in the best case. It is natural to
wonder about its efficiency on the average. For the question to make sense, we must be
precise about the meaning of "on the average". This requires us to assume an a priori
probability distribution on the instances that our algorithm may be asked to solve. The
conclusion of an average-case analysis may depend crucially on this assumption, and
such analysis may be misleading if in fact our assumption turns out not to correspond
with the reality of the application that uses the ﬁlgorithm. Most of the time, average-case
analyses are performed under the more or less realistic assumption that all instances of
any given size are equally likely. For sorting problems, it is simpler to assume also that
all the elements to be sorted are distinct.

Suppose we have n distinct elements to sort by insertion and all n! permutations
of these elements are equally likely. To determine the time taken on average by the
algorithm, we could add the times required to sort each of the possible permutations, and
then divide by n! the answer thus obtained. An alternative approach, easier in this case, is
to analyze directly the time required by the algorithm. For any i, 2<i<n, consider the
subarray TT1..i]. The partial rank of TTi] is defined as the position it would occupy if the
subarray were sorted. For example, the partial rank of 774] in [3,6,2,5,1,7,4] is 3 because
T11..4] once sorted is [2,3,5,6]. Clearly, the partial rank of 7i] does not depend on the
order of the elements in subarray 771..i-1]. It is easy to show that if all n! permutations of
T7l..n] are equally likely, then the partial rank of 7Ti] is equally likely to take any value
between 1 and i, independently for all values of i.

Suppose now that i is fixed, 2<i<n, and that we are about to enter the while loop.
Inspection of the algorithm shows that subarray T[1..i-1]contains the same elements as
before the algorithm was called, although they are now in sorted order, and 71i] still has
its original value since it has not yet been moved. Therefore, the partial rank of 7Ti] is

equally likely to be any value between 1 and i. Let k be this partial rank. We choose again
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as barometer the number of times the while loop condition (j>0 and x<T7[/]) is tested. By
definition of partial rank, and since TT1..i-1] is sorted, this test is performed exactly i-k+1
times. Because each value of k between 1 and i has probability 1/i of occurring, the

average number of times the barometer test is performed for any given value of i is

i -
S A T
k=1 ; -

e

These events are independent for different values of i. The total average number of times

the barometer test is performed when sorting n items is therefore

n

i+l m-1n+4)
I—ch‘i_ié:Z T 3

which is in 8(n?). We conclude that insertion sorting makes on the average about half as

many comparisons as in the worst case, but this number is still quadratic.

4.2 AMORTIZED ANALYSIS

Worst-case analysis is sometimes overly pessimistic. Consider for instance a
process P that has side effects, which means that P modifies the value of global variables.
As a result of side effects, two successive identical calls on P could take a substantially
different amount of time. The easy thing to do when analyzing an algorithm that uses P
as subalgorithm would be to analyze P in the worst case, and assume the worst happens
each time P is called. This approach yields a correct answer assuming we are satisfied
with an analysis in O notation but the answer could be pessimistic. Consider for instance

the following loop.

fori—1tondoP
If P takes a time in 8(log n) in the worst case, it is correct to conclude that the loop takes
a time in O(n log n), but it may be that it is much faster even in the worst case. This could
happen if P cannot take a long time (Q(log n)) unless it has been called many times
previously, each time at small cost. It could be for instance that P takes constant time on

the average, in which case the entire loop would be performed in linear time.

Analysis and De si of gs



Rather than taking the average over all possible inputs, which requires an
assumption on the probability distribution of instances, we take the average over
successive calls. Here the times taken by the various calls are highly dependent. To
prevent confusion, we shall say in this context that each call on P takes amortized
constant time rather than sﬁying that it takes constant time on the average.

Saying that a process takes amortized constant time means that there exists a
constant ¢ such that for any positive n and any sequence of n calls on the process, the
total time for those calls is bounded above by cn. Therefore, excessive time is allowed for
one call only if very short times have been registered previously, not merely if further
calls would go quickly. Indeed, if a call were allowed to be expensive on the ground that
it prepares for much quicker later calls, the expense would be wasted should that call be
the final one.

Consider for instance the time needed to get a cup of coffee in a common coffee
room. Most of the time, you simply walk into the room, grab the pot, and.pour coffee into
your cup. Perhaps you spill a few drops on the table. Once in a while, however, you have
the bad luck to find the pot empty, and you must start a fresh brew, which is considerably
more time-consuming. While you are at it, you may as well clean up the table. Thus, the
algorithm for getting a cup of coffee takes substantial time in the worst case, yet it is
quick in the amortized sense because a long time is required only after several cups have
been obtained quickly. (For this analogy to work properly, we must assume somewhat
unrealistically that the pot is full when the first person walks in; otherwise the very first
cup would consume too much time.)

A classic example of this behavior in computer science concerns storage
allocation with occasional need for "garbage collection”. A simpler example concerns
updating a binary counter. Suppose we wish to manage the counter as an array of bits

representing the value of the counter in binary notation: array C[l..m] represents

m Syl
ZJ“I 2™ CLJjl. For instance, array [0,1,1,0,1,1] represents 27. Since such a counter
can only count up to 2™ - 1, we shall assume that we are happy to count modulo 2", Here
is the algorithm for adding 1 to the counter.

L ___ ___ ____________ __ _____ ]
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procedure count(C[1..m])
{This procedure assumes m > 1
and C[jle {0,1} foreach 1 < j s m}
Jj=m+1
repeat
Jeg=1
Cljl=1-Cl[j]

until C[jl=1orj=1
Called on our example [0,1,1,0,1,1], the array becomes [0,1,1,0,1,0] the first time round
the loop, [0,1,1,0,0,0] the second time, and- [0.1.1,1,0,0] the third time (which indeed
represents the value 28 in binary); the loop then terminates with j = 4 since C[4] is now
equal to 1. Clearly, the algorithm's worst case occurs when C[j] = 1 for all j, in which
case it goes round the loop m times. Therefore, n calls on count starting from an all-zero
array take total time in O(nm). But do they take a time in 6(nm)? The answer is negative,
as we are about to show that count takes constant amortized time. This implies that our n
calls on count collectively take a time in f(n), with a hidden constant that does not
depend on m. In particular, counting from 0 to n = 2" - 1 can be achieved in a time linear
in n, whereas careless worst-case analysis of count would yield the correct but pessimistic
conclusion that it takes a time in O(n log n).

There are two main techniques to establish amortized analysis results: the

potential function approach and the accounting trick. Both techniques apply best to

analyze the number of times a barometer instruction is executed.

Potential Functions

Suppose the process to be analyzed modifies a database and its efficiency each
time it is called depends on the current state of that database. We associate with the
database a notion of "cleanliness", known as the potential function of the database. Calls
on the process are allowed to take more time than average provided they clean up the
database. Conversely, quick calls are allowed to mess it up. This is precisely what
happens in the coffee room! The analogy holds even further: the faster you fill up your
cup, the more likely you will spill coffee, which in turn means that it will take longer

when the time comes to clean up. Similarly, the faster the process goes when it goes fast,

_——— . ]
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the more it messes up the database, which in turn requires more time when cleaning up
becomes necessary.

Formally, we introduce an integer-valued potential function @ of the state of the
database. Larger values of @ correspond to dirtier states. Let ¢y be the value of @ on the
initial state; it represents our standard of cleanliness. Let ¢b; be the value of ® on the
database after the i call on the process, and let #; be the time needed by that call (or the
number of times the barometer instruction is performed). We define the amortized time
taken by that call as

t=t + bi - i

Thus, Ei is the actual time required to carry out the i™ call on the process plus the
increase in potential caused by that call. It is sometimes better to think of it as the actual
time minus the decrease in potential, as this shows that operations that clean up the
database will be allowed to run longer without incurring a penalty in terms of their
amortized time.

Let T, denote the total time required for the first n calls on the process, and denote the

total amortized time by Th.

z Z (L + i — pi-1)

=Tn + Pn— o
Therefore

Ty = fn = (d)n = ¢’O)-

The significance of this is that Ty < Tyholds for all n provided $n never becomes

smaller than €0 In other words, the total amortized time is always an upper bound on

the total actual time needed to perform a sequence of operations, as long as the database
W
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is never allowed to become "cleaner” than it was initially. This approach is interesting
when the actual time varies significantly from one call to the next, whereas the amortized
time is nearly invariant. For instance, a sequence of operations takes linear time when the
amortized time per operation is constant, regardless of the actual time required for each
operation. The challenge in applying this technique is to figure out the proper potential
function. We illustrate this with our example of the binary counter. A call on count is
increasingly expensive as the rightmost zero in the counter is farther to the left. Therefore
the potential function that immediately comes to mind would be m minus the largest j
such that C[j]=0. It turns out, however, that this choice of potential function is not
appropriate because a single operation can mess up the counter arbitrarily (adding 1 to the

counter representing 2* -2 causes this potential function to jump from O to k). Fortunately,

a simpler potential function works well: define ®(C )as the number of bits equal to 1 in
C. Clearly, our condition that the potential never be allowed to decrease below the initial
potential holds since the initial potential is zero.

What is the amortized cost of adding 1 to the counter, in terms of the number of

times we go round the loop? There are three cases to consider.

* If the counter represents an even integer, we go round the loop once only as we
flip the rightmost bit from O to 1. As a result, there is one more bit set to 1 than
there was before. Therefore, the actual cost is 1 trip round the loop, and the
increase in potential is also 1. By definition, the amortized cost of the operation is
1+1=2.

* If all the bits in the counter are equal to 1, we go round the loop m times, flipping
all those bits to 0. As a result, the potential drops from m to 0. Therefore, the
amortized costis m - m = 0.

* In all other cases, each time we go round the loop we decrease the potential by 1
since we flip a bit from 1 to 0, except for the last trip round the loop when we
increase the potential by 1 since we flip a bit from 0 to 1. Thus, if we go round the
loop & times, we decrease the potential k - 1 times and we increase it once, for a

net decrease of k - 2. Therefore, the amortized cost is k - (k - 2) = 2.

%
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In conclusion, the amortized cost of adding 1 to a binary counter is always exactly
equivalent to going round the loop twice, except that it costs nothing when the counter
cycles back to zero. Since the actual cost of a sequence of operations is never more than
the amortized cost, this proves that the total number of times we go round the loop when
incrementing a counter n times in succession is at most 2n provided the counter was

initially set to zero.

The Accounting Trick

This technique can be thought of as a restatement of the potential function
approach, yet it is easier to apply in some contexts. Suppose you have already guessed an
upper bound T on the time spent in the amortized sense whenever process P is called, and
you wish to prove that your intuition was correct (7 may depend on various parameters,
such as the instance size). To use the accounting trick, you must set up a virtual bank
account, which initially contains zero tokens. Each time P is called, an allowance of T
tokens is déposited in the account; each time the barometer instruction is executed, you
must pay for it by spending one token from the account. The golden rule is never to allow
the account to become overdrawn. This insures that long operations are permitted only if
sufficiently many quick ones have already taken place. Therefore, it suffices to show that
the golden rule is obeyed to conclude that the actual time taken by any sequence of
operations never exceeds its amortized time, and in particular any sequence of s
operations takes a time that is at most 7.

To analyze our example of a binary counter, we allocate two tokens for each call
on count (this is our initial guess) and we spend one token each time count goes round its
loop. The key insight again concerns the number of bits set to 1 in the counter. We leave
it for the reader to verify that each call on count increases (decreases) the amount
available in the bank account precisely by the increase (decrease) it causes in the number
of bits set to 1 in the counter (unless the counter cycles back to zero, in which case less
tokens are spent). In other words, if there were i bits set to 1 in the counter before the call
and j > 0 bits afterwards, the number of tokens available in the bank account once the call
is completed has increased by j - i (counting a negative increase as a decrease).

Consequently, the number of tokens in the account is always exactly equal to the number
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of bits currently set to 1 in the counter (unless the counter has cycled, in which case there
are more tokens in the account). This proves that the account is never overdrawn since
the number of bits set to 1 cannot be negative, and therefore each call on count costs at

most two tokens in the amortized sense.

4.3 SOLVING RECURRENCES

The indispensable last step when analyzing an algorithm is often to solve a
recurrence equation. With a little experience and intuition most recurrences can be solved
by intelligent guesswork. However, there exists a powerful technique that can be used to
solve certain classes of recurrence almost automatically. This is the main topic of this

section: the technique of the characteristic equation.

Intelligent Guesswork

This approach generally proceeds in four stages: calculate the first few values of
the recurrence, look for regularity, guess a suitable general form, and finally prove by
mathematical induction (perhaps constructive induction) that this form is correct.
Consider the following recurrence.

0 ifn=0

T(n)= {3.”.,, +2)+n  otherwise (44)

One of the first lessons experience will teach you if you try solving recurrences is that
discontinuous functions such as the floor function (implicit in n + 2) are hard to analyze.
Our first step is to replace n + 2 with the better-behaved "n/2" with a suitable restriction
on the set of values of n that we consider initially. It is tempting to restrict n to being even
since in that case n + 2 = n/2, but recursively dividing an even number by 2 may produce
an odd number larger than 1. Therefore, it is a better idea to restrict n to being an exact
power of 2. Once this special case is handled, the general case follows painlessly in

asymptotic notation.

First, we tabulate the value of the recurrence on the first few powers of 2.

L. — ]
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n |1 2 4 8 16 32
Tm) |1 5 19 65 211 665

Each term in this table but the first is computed from the previous term. For instance,
T(16)= 3 x T(8)+16 = 3 x 65 + 16 = 211. But is this table useful? There is certainly no
obvious pattern in this sequence! What regularity is there to look for? The solution
becomes apparent if we keep more "history" about the value of 7(n). Instead of writing
T(2) = 5, it is more useful to write T(2)=3x 1 + 2.

Then,

Td)=3xT(2)+4=3x3x1+2)+4=3x1+3x2+4.

We continue in this way, writing n as an explicit power of 2.

n T(n)
1 1
2 3x1+2

22 32x1+3x2+22

23 Bx1+32x2+3x22+23

2% 3¥x1+3Px2+32x2243x2824+2

25 PFx1+3¥x2+33%x224+32x234+3x24425

The pattern is now obvious.
T(zk) - 3k 20 + 3k—1 LI 3k—2 oL ey 12k—1 +3° 2k

k k
- Zsk—l’zi = Bk 2(2/3)1

i=0 1=0
=3*x (1-2/3)%H/(1-2/3)
= 3k+] - 2k+1 4.5)

It is easy to check this formula against our earlier tabulation. By induction (not f\\l’:ﬂ;

mathematical induction), we are now convinced that the above equation is correct. |
With hindsight, the Equation (4.5) could have been guessed with just a little more

intuition. For this it would have been enough to tabulate the value of T(n) + in for small

values of 7, suchas -2 <i<?2.

e —
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n 11 2 4 8 16 32

Tm)-2n -1 1 11 49 179 601
T(n)—-n 0 3 15 57 195 633
T(n) 5 19 65 211 665
T(n)+n 2 7-23 B 27 697
T(n)+2n 3 9 27 81 243 729

This time, it is immediately apparent that 7(n)+2n is an exact power of 3, from which the

Equation (4.5) is readily derived.

What happens when n is not a power of 2? Solving recurrence 4.4 exactly is rather
difficult. Fortunately, this is unnecessary if we are happy to obtain the answer in
asymptotic notation. For this, it is convenient to rewrite Equation 4.5 in terms of T(n)
rather than in terms of 7(2%). Since n = 2k it follows that k = Ig n.

Therefore

T(n)= T(2B")=31-lgn _gl+lgn

7 g3
Using the fact that 38" = n'83 i¢ follows that T(n)= 3n'83 - 2n (4.6)

when n is a power of 2. Using conditional asymptotic notation, we conclude that
T(n)e @(n'83 | » is a power of 2). Since T(n) is a nondecreasing function (a fact easily

proven by mathematical induction) and n'®* is a smooth function and T(n)€ ©(n'83)

unconditionally.

Homogeneous Recurrences
We begin our study of the technique of the characteristic equation with the

resolution of homogeneous linear recurrences with constant coefficients, that is

recurrences of the form

aotn +a1t}|—l+"'+a‘ktn k=0 (47)

where the ¢#; are the values we are looking for. In addition to Equation 4.7, the values of #;
on k values of i (usually 0 <i<k-1or1 <i<k) are needed to determine the sequence.
These initial conditions will be considered later. Until then, Equation 4.7 typically has

infinitely many solutions. This recurrence is
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= linear because it does not contain terms of the form tn-itn-y, t%—i, and so on;
» homogeneous because the linear combination of the 7,.; is equal to zero; and
» with constant coefficients because the a; are constants.
» Consider for instance our now familiar recurrence for the Fibonacci sequence.
Consider for instance our now familiar recurrence for the Fibonacci sequence.
Jn=Jn1+ fn2
This recurrence easily fits the mould of Equation 4.7 after obvious rewriting.
fn = Ju-i —fn—z =0
Therefore, the Fibonacci sequence corresponds to a homogeneous linear recurrence with
constant coefficients withk = 2,ap=1and a;, = a; = -1.
Before we even start to look for solutions to Equation 4.7, it is interesting to note

that any linear combination of solutions is itself a solution. In other words, if f,, and g,

satisfy Equation 4.7, Zi-0@ifn-i =0 and similarly for g, and if we set
tn = Cfn +dgn for arbitrary constants ¢ and d, then 1, is also a solution to Equation
4.7. This is true because
aptn+aitn1+ - +arln-k

= ao(Cfn + dgn)+ar(Cfu-1 +dgn-1)+ - - - + ax(Cfu-k + dGn-k)

=clagfa+ @ fa1+ - +akfai)+d(@gGn+aign-1+ - +axGn-k)

=cx0+dx0=0.
This rule generalizes to linear combinations of any number of solutions.

Trying to solve a few easy examples of recurrences of the form of Equation 4.7
(not the Fibonacci sequence) by intelligent guesswork suggests looking for solutions of
the form
ty = x"
where x is a constant as yet unknown. If we try this guessed solution in Equation 4.7, we
obtain
QX" +ay x4+ - +apx™ k=0

This equation is satisfied if x = 0, a trivial solution of no interest. Otherwise, the equation

is satisfied if and only if
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aoxk +arx*'+.--+ar=0.
This equation of degree k in x is called the characteristic equation of the recurrence 4.7
and
p(x)=aox* +a; x* 1+ .- +ax
is called its characteristic polynomial.
Recall that the fundamental theorem of algebra states that any polynomial p(x) of
degree k has exactly k roots (not necessarily distinct), which means that it can be

factorized as a product of k monomials

k
p(x)=[](x-r)

i=1

where the 7; may be complex numbers. Moreover, these 7; are the only solutions of the
equation p(x) = 0.

Consider #ny root r; of the characteristic polynomial. Since p(r;) = 0 it follows
that x = r; is a solution to the characteristic equation and therefore r;" is a solution to the

recurrence. Since any linear combination of solutions is also a solution, we conclude that

k
th= D it
i=1 (4.8)

satisfies the recurrence for any choice of constants C), Cs, ..., Ci. The remarkable fact,
which we do not prove here, is that Equation 4.7 has only solutions of this form provided
all the r; are distinct. In this case, the k constants can be determined from k initial
conditions by solving a system of k linear equations in k unknowns.

Example: (Fibonacci) Consider the recurrence

=1

n ifn=0orn=1
Sn-1+ fan-2 otherwise

First we rewrite this recurrence to fit the mould of Equation 4.7.
fn -fn-l "'fn—! =0
The characteristic polynomial is
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x2-x-1
whose roots are
. =
rn="%%andn = =

The general solution is therefore of the form

— n -, n
.f" - Clr] + Lz Tz . (4'9)

It remains to use the initial conditions to determine the constants ¢y and ¢2. Whenn =0,
Equation 4.9 yields fy = ¢; + ¢2. But we know that f; = 0. Therefore, ¢; + e =0,
Similarly, when n = 1, Equation 4.9 together with the second initial condition tell us that
fi=a r + ¢ rn = 1. Remembering that the values of r; and r; are known, this gives us

two linear equations in the two unknowns ¢; and c;.

c o+ ¢ = 0
nc + nco = 1
Solving these equations, we obtain
€1 = —'—5- and ¢; = --‘;1,5.

Thus

A CUNELY

which is de Moivre's famous formula for the Fibonacci sequence. Notice how much
easier the technique of the characteristic equation is than the approach by constructive
induction. It is also more precise since all we were able to discover with constructive
induction was that “f, grows exponentially in a number close to ¢"; now we have an

exact formula.

44 SUMMARY

In this unit, average case analysis of sorting algorithm is analyzed. We observed
that insertion sorting makes on the average about half as many comparisons as in the
worst case and this number is quadratic. The two main techniques to establish amortized

analysis results: the potential function approach and the accounting trick are discussed.

Analysis and Design of Algorithms 52



Both techniques apply best to analyze the number of times a barometer instruction is
executed. The indispensable step when analyzing an algorithm is often to solve a
recurrence equation. With a little experience and intuition most recurrences can be solved
by intelligent guesswork. The characteristic equation is a powerful technique that can be

used to solve certain classes of recurrence almost automatically.

45 KEYWORDS

1) Average Case Analysis
2) Amortized Analysis
3) Recurrence

4) Accounting trick

5) Characteristic equation

6) Characteristic polynomial

4.6 QUESTIONS FOR SELF STUDY

1) Explain average case analysis of algorithms considering suitable examples.
2) What is meant by amortized analysis? Explain with an example.

3) Explain the potential function approach to analyze algorithms.

4) How to solve certain class of recurrences using characteristic equation?

5) Explain intelligent guesswork approach to solve recurrences.

6) What are homogeneous linear recurrences? Explain.

4.7 EXCERCISES

1) Determine the complexity of sorting algorithms using amortization scheme.

2) Obtain the general solution for a Fibonacci sequence using characteristic

equation approach.
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UNIT -3

THE GREEDY METHOD

STRUCTURE
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5.10 Exercise

5.11 Reference

5.0 OBJECTIVES

After studying this unit you should be able to

= Elucidate the optimal solution to a problem.

* Explain the greedy method to construct an optimal solution to a problem.
= Design greedy algorithm for a problem.

= State the complexity of an algorithm.
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5.1 INTRODUCTION

Greedy method is a method of choosing a subset of a dataset as the solution set
that result in some profit. Consider a problem having n inputs. We are required to obtain
a solution which is a series of subsets that satisfy some constraints or conditions. Any
subset, which satisfies these constraints, is called a feasible solution. It is required to
obtain a feasible solution that maximizes or minimizes an objective function. This
feasible solution finally obtained is called optimal solution. The cbncept is called Greedy
because at each stage we choose the “best” available solution i.e., we are “greéay” about

the output.

In greedy strategy, one can devise an algorithm that works in stages, considering
one input at a time and at each stage, a decision is taken on whether the data chosen
results with an optimal solution or not. If the inclusion of a particular data, results with an
optimal solution, then the data is added into the partial solution set. On the other hand, if
the inclusion of that data results with infeasible solution then the data is eliminated from

the solution set.

Stated in simple terms, the greedy algorithfn sﬁggésts that we should be “greedy”
about the intermediate solution i.e., if at any intermediate stage k different options are

available to us, choose an option which “maximizes” the output.

The general algorithm for the greedy method is -
* Choose an element e belonging to the input dataset D.
* Check whether e can be included into the solution set S, If yes solution set is
Union(S, e)

* Continue until s is filled up or D is exhausted whichever is earlier.

Sometimes the problem under greedy strategy could be to select a subset out of
given n inputs, and sometimes it could be to reorder the n data in some optimal sequence.

The control abstraction for the subset paradigm is as follows:

S —
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Algorithm: GREEDY
Input: A, a set containing n inputs
Output: S, the solution subset
Method:
S={}
Fori=1tondo
x=SELECT (A())
If (FEASIBLE (S, x))
S=TUNION(S. x)
If end
Forend
return (S)

Algorithm ends
SELECT selects the best possible solution (or input) from the available inputs and
includes it in the solution. If it is feasible (in some cases, the constraints may not allow us

to include it in the solution, even if it produces the best results), then it is appended to the

partially built solution. The whole process is repeated till all the options are exhausted.

In the next few sections, we look into some of the applications of the Greedy method.

5.2 THE PROBLEM OF OPTIMAL STORAGE ON TAPES

We know, when large quantities of data or program need to be backed up, the best
way is to store them on tapes. For our discussion, let us presume that they are programs.
However, they can be any other data also. (Though with the advent of high capacity CDs,
the importance of tapes as storage media can be said to have reduced, but they have not
vanished altogether).

Consider n programs that are to be stored on a tape of length L. Each program P;
is of length /; where i lies between 1 and n. All programs can be stored on the tape iff the

sum of the lengths of the programs is at most L. It is assumed that, whenever a program is

to be retrieved the tape is initially positioned at the start end. That is, since the tape is a
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sequential device, to access the i program, we will have to go through all the previous
(i-1) programs before we get to i, i.e., to go to a useful program (of primary interest), we
have to go through a number of useless (for the time being) programs. Since we do not
know in what order the programs are going to be retrieved, after accessing each program,
we come back to the initial position.

Let #; be the time required for retrieving program ii where programs are stored in
the order {P;, Py, P3, ..., P,}. Thus to get to the i program, the required time is
proportional to

If all programs are accessed with equal probability over a period of time, then the average

retrieval time (mean retrieval time)
1 n
MRT=—) .1
=

To minimize this average retrieval time, we have to store the programs on. the tape in

some optimal sequence.

Before trying to devise the algorithm, let us look at the commonsense part of it.
The first program (program no. 1) will have to be passed through, the maximum number
of times, as irrespective of the program that we are interested in, we have to pass this.
Similarly, the second program has to be passed through in all cases, except when we are
interested in the first program. Likewise it can be concluded that the first, second, ... , n™
programs are scanned/passed through with decreasing frequency. Hence, it is better to
store the shortest program at the beginning. Due to the fact that the first program is
passed/scanned, maximum number of times, if we store the smallest one, it adds the

smallest possible amount to the time factor.

Similarly the second program will have to be the second smallest and so on.
Precisely, the programs to be stored on the tape are to be arranged according to the
increasing lengths. The smallest program which is passed/scanned through the maximum

S —
Analysis and Design of Algorithms ‘ 58



number of times, adds less over head. The largest of programs is at the end of the tape,
but will hardly be passed through, except when we are actually interested in the same.

From the above discussion one can observe that the MRT can be minimized if the
programs are stored in an increasing order i.e., [y <l < I3 ... < I,. Hence the ordering
defined minimizes the retrieval time. Here, the solution set obtained is not a subset of

data but is the data set itself in a different sequence.
Now we take a numerical example to see whether this works.

Ilustration

Assume that 3 files are given. Let the length of files A, B and C be 7, 3 and 5
units respectively. All these three files are to be stored on to a tape S in some sequence
that reduces the average retrieval time.

The table shows the retrieval time for all possible ordeérs.

Order of recording Retrieval tune MRT
ABC THTH3)HT+3+5)=32 -33 =10.667
ACB TS HT+SH3)=34 | =133
BAC 3HEBHTHE+THS)=28 3::"- =9.333
BCA 3H3H5)H(3+5+7)=26 %E =8.333
CAB S+H(S+T)H(5+7+3)=32 -3-35 = 10.667
CBA S{(5+3pH(5+3+T)=28 3‘3§= 9333

Though this discussion looks fairly straight forward enough not to need an
algorithm, it provides us certain insights. In this case, we are trying to optimize on the
time of accessing, which is nothing but the lengths of programs to be traversed. Hence,
we try to optimize on the length of the part of the scan'we scan at each stage - i.e. we are

L e ]
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“greedy” about the time spent in retrieving a file of our interest. We actually build the list
in stages. At each stage of storing the programs choose the least costly of available
options - i.e. the program of shortest length. Though the program is simple enough, we

write a small algorithm to implement the same.

Algorithm: TAPE STORAGE
Input : n. the number of programs
1,.1,. L. .... 1. the lengths of the programs to be stored
Output: minimum mean retrieval time yielding sequence
Method :
Sort the list in the non decreasing order of lengths
Fori=1tondo
Choose the i® program from the sorted list and store it on the tape
For end
Algorithm ends

The procedure can also be used to append programs on more than one tape. The first tape

gets the smallest set of the programs (in terms of their lengths) and so on.

Complexity
The greedy method simply requires us to store the progfams in nondécfcasing'

order of their lengths. This ordering can be done in O(n log n) time using efficient sorting
algorithm like heap sort. '

5.3 A THIRSTY BABY

Assume there is a thirsty, but smart, baby, who has access to a glass of water, a
carton of milk, etc., a total of n different kinds of liquids. Let a; be the amount of ounces

in which the i™ liquid is available. Based on her experience, she also assigns certain

e ——
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satisfying factor, s;, to the i liquid. If the baby needs to drink ¢ ounces of liquid, how
much of each liquid should she drink?
Let x;, 1 <i < n, be the amount of the " liquid the baby will drink. The solution for-this

thirsty baby problem is obtained by finding real numbers x;, 1 < i < n, that maximize

xi=t

ST : Y2 .
i=1 """ gubject to the constraints that <~i=1 and for all 1 <i < n,

: bl oy B iz :
0<x; < a;. We notice that if —~i=1 *"? * then this instance will not be solvable.

A specification

Input: n, 1, 5;, a;, 1 <i<n.nis an integer, and the rest are positive reals.

T i
Output: If Z:i=1 a; 2 t'output is a set of real numbers x;, 1 < i < n, such that

m . n S .
Z:1=1 8iTi, is maximum, zz=1 L1 t, andforall1<i<n, 0<x; < a

n .
In this case, the constraints are Z'4‘3=1 Ty = t, and forall 1 <i<n, 0<x<a, and the
n e
optimization function is Z:-i=1 Ay
Every set of xi that satisfies the constraints is a feasible solution, and if it further

n e ® -y . -
maximizes Z:-i=1 $i%% js an optimal solution.

5.4 LOADING PROBLEM

A large ship is to be loaded with containers of cargos. Different containers,
although of equal size, will have different weights. Let w; be the weight of the "
container, 1 <i < n, and the capacity of the ship is ¢, we want to find out how could we

load the ship with the maximum number of containers.
Let x; € {0, 1}. If x; = 1, we will load the i container, otherwise, we will not load
T e
it. We wish to assign values to x;’s is such that Z'i=1 %S C, and x; € {0, 1}. The
o8 b i

. b L
optimization function is “<~i=1 "¢
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5.5 CHANGE MAKING

A child buys a candy bar at less than one buck and gives a $1 bill to the cashier,
who wants to make a change using the fewest number of coins. The cashier constructs the
change in stages, in each of which a coin is added to the change.

The greedy criterion is as follows: At each stage, increase the total amount as
much as possible. To ensure the feasibility, such amount in no stage should exceed the
desired change. For example, if the desired change is 67 cents. The first two stages will
add in two quarters. The next one adds a dime, and following one will add a nickel, and

the last two will finish off with two pennies.

5.6 MACHINE SCHEDULING

We are given an infinite supply of machines, and n tasks to be performed in those
machines. Each task has a start time, s;, and finish time, #;. The period [s;, #] is called the
processing interval of task i. Two tasks i and j might overlap, e.g., [1, 4] overlaps with
[2, 4], but not with [4, 7].

A feasible assignment is an assignment in which no machine is given two
overlapped tasks. An optimal assignment is a feasible one that uses fewest numbers of
machines. i

We line up tasks in nondecreasing order of s;’s, and call a machine old, if it has
been assigned a task, otherwise, call it new. A greedy strategy could be the following: At
each stage, if an old machine becomes available by the start time of a task, assign the task

to this machine; otherwise, assign it to a new one.

Example: Given seven tasks, their start time, as well as their finish time as follow:

task (a|blc| d |e|flg
\ start |[0|3(4| 9 |[7|1|6
finish|2|7|7[11|4|5|8

W
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